Randomized Iterative Methods for Linear Systems
نویسندگان
چکیده
We develop a novel, fundamental and surprisingly simple randomized iterative method for solving consistent linear systems. Our method has five different but equivalent interpretations: sketch-and-project, constrain-and-approximate, random intersect, random linear solve and random fixed point. By varying its two parameters—a positive definite matrix (defining geometry), and a random matrix (sampled in an i.i.d. fashion in each iteration)—we recover a comprehensive array of well known algorithms as special cases, including the randomized Kaczmarz method, randomized Newton method, randomized coordinate descent method and random Gaussian pursuit. We naturally also obtain variants of all these methods using blocks and importance sampling. However, our method allows for a much wider selection of these two parameters, which leads to a number of new specific methods. We prove exponential convergence of the expected norm of the error in a single theorem, from which existing complexity results for known variants can be obtained. However, we also give an exact formula for the evolution of the expected iterates, which allows us to give lower bounds on the convergence rate.
منابع مشابه
On the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملComparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
متن کاملA New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation
In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملImprovements of two preconditioned AOR iterative methods for Z-matrices
In this paper, we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix. These methods can be considered as improvements of two previously presented ones in the literature. Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners.
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 36 شماره
صفحات -
تاریخ انتشار 2015